Whenever in our code a conditional statement is executed, Branch Precitor tries to predict which way the flow will go and executes that even before conditional statement actually returns the output. This is done to stop wastage of time in waiting for conditional statement execution.
From wikipedia– In computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch (e.g. an if-then-else structure) will go before this is known for sure. The purpose of the branch predictor is to improve the flow in the instruction pipeline. Branch predictors play a critical role in achieving high effective performance in many modern pipelined microprocessor architectures such as x86.
Here is a good example to see what Branch predictor can do
package Permissions.Permissions;
import java.util.Arrays;
import java.util.Random;
public class test {
public static void main(String[] args)
{
// Generate data
int arraySize = 32768;
int data[] = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c)
data[c] = rnd.nextInt() % 256;
// !!! With this, the next loop runs faster
// Arrays.sort(data);
// Test
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 100000; ++i)
{
// Primary loop
for (int c = 0; c < arraySize; ++c)
{
if (data[c] >= 128)
sum += data[c];
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
}
}
Try uncommenting the sort array part and see the difference.
Source- stackoverflow