Sensitivity Analysis in Decision Making

A few days back I wrote about the basics of decision making. Next, we will look into Sensitivity analysis.

Sensitivity Analysis examines how our decision might change with different input data.

We will start with our previous example, where a company is trying to launch a product and they have the following options right now.

ALTERNATIVESUCCESS OUTCOMEFAILURE OUTCOME
Go with prototype 1200,000-180,000
Go with prototype 2100,000-20,000
Do nothing00
Decision/ Payoff Table

Let us say

P = Probability of a favourable market i.e. Success

(1-P) = Probability of unfavourable market i.e. failure

Sensitivity Analysis

EMV Prototype 1 = 200000P – 180000(1-P)
= 380000P – 180000

EMV Prototype 2 = 100000P – 20000(1-P)
= 120000P – 20000

EMV Do nothing = 0P – 0(1-P) = 0

sensitivity analysis

Point 1

EMV Do nothing = EMV Prototype 2
0 = 120000P – 20000
P = 20000/120000
P = 0.167

Point 2

EMV Prototype 2 = EMV Prototype 1
120000P – 20000 = 380000P – 180000
P = 160000/260000
P = 0.615

So based on sensitivity analysis we can conclude based on probability of success or favorable market P, that

Do nothing if P < 0.167
Go for prototype 1 if P>=0.167 and P<0.615
Go for Prototype 2 if P>= 0.615